绘制方法:直线: (如:3x ? 2)多项式: (如:x^3 + 3x^2 ? 5x + 2)三角函數: sin(x), cos(x/2), tan(2x), csc(3x), sec(x/4), cot(x)反三角函數: arcs
点击"? o + ← ↑ ↓ →" 移动图像!绘制方法:直线: (如:3x ? 2)多项式: (如:x^3 + 3x^2 ? 5x + 2)三角函數: sin(x), cos(x/2), tan(2x), csc(3x), sec(
y=tangent(x) GraphX(deg)X(Rad)tangent(X)180 ?π0150 ?5π/6-0.57735135 ?3π/4-1120 ?2π/3-1.73205190 ?
y=Sine(x) GraphX(deg)X(Rad)Y=sine(X)180 ?π0150 ?5π/60.5135 ?3π/40.707107120 ?2π/30.86602590 ?π/2
y=cotangent(x) GraphX(deg)X(Rad)y=cotangent(X)180 ?πOut of Range150 ?5π/6-1.732051135 ?3π/4-1120 ?2π
y=cosine(x) GraphX(deg)X(Rad)Y=cosine(X)180 ?π-1150 ?5π/6 -0.866025135 ?3π/4-0.707107120 ?2π/3-0.5
y=arctan(x) GraphThe usual principal values of the arctan(x) and arccot(x) functions graphed on the cartesian plane.
y=arcsin(x) GraphY(Degrees)Y(Radian)X90 ?π/2160 ?π/30.86602545 ?π/40.70710730 ?π/60.50 ?00-30 ?
y=arcsin(x) GraphY(Degrees)Y(Radian)X90 ?π/2160 ?π/30.86602545 ?π/40.70710730 ?π/60.50 ?00-30 ?
y=arccos(x) GraphY(Degrees)Y(Radian)X180 ?π-1150 ?5π/6-0.866025135 ?3π/4-0.707107120 ?2π/3-0.590 ?
y=arccos(x) GraphY(Degrees)Y(Radian)X180 ?π-1150 ?5π/6-0.866025135 ?3π/4-0.707107120 ?2π/3-0.590 ?
sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+co